On Hautus-type conditions for controllability of implicit linear discrete-time systems
From MaRDI portal
Publication:1823899
DOI10.1007/BF01598416zbMath0681.93007MaRDI QIDQ1823899
Publication date: 1989
Published in: Circuits, Systems, and Signal Processing (Search for Journal in Brave)
Controllability (93B05) Discrete-time control/observation systems (93C55) Linear systems in control theory (93C05) General theory for ordinary differential equations (34A99)
Related Items
On complete and strong controllability for rectangular descriptor systems ⋮ Disturbance decoupling by behavioral feedback for linear differential-algebraic systems ⋮ Stability concepts for general continuous-time implicit systems: definitions, Hautus tests and Lyapunov criteria ⋮ Remarks on observability of implicit linear discrete-time systems ⋮ A tutorial on the geometric analysis of linear time-invariant implicit systems ⋮ Controllability of Linear Differential-Algebraic Systems—A Survey ⋮ Implicit linear discrete-time systems
Cites Work
- Unnamed Item
- Unnamed Item
- A new approach to regular descriptor systems
- A geometric characterization of the reachable and the controllable subspaces of descriptor systems
- Remarks on controllability of implicit linear discrete-time systems
- On almost invariant subspaces for implicit linear discrete-time systems
- Controllability and stabilization for linear systems of algebraic and differential equations
- A survey of linear singular systems
- Fundamental, reachability, and observability matrices for discrete descriptor systems
- A generalized state-space for singular systems
- Matrix pencil characterization of almost ( A, Z) -invariant subspaces : A classification of geometric concepts
- Algebraic characterizations of almost invariance
- The Pencil $(sE - A)$ and Controllability–Observability for Generalized Linear Systems: a Geometric Approach
- Some geometric considerations about the Kronecker normal form
- Singular systems: A new approach in the time domain
- Solvability, controllability, and observability of continuous descriptor systems
- On Singular Implicit Linear Dynamical Systems
- Generic controllability theorems for descriptor systems
This page was built for publication: On Hautus-type conditions for controllability of implicit linear discrete-time systems