Sur l'existence de solutions \(C^{1,1/n}\), \(C^{1,1}\) et \(C^ 2\), radiales pour des équations de type Monge-Ampère complexe dans la boule unité de \({\mathbb{C}}^ n\). (On the existence of \(C^{1,1/n}\), \(C^{1,1}\) and \(C^ 2\) solutions of complex
From MaRDI portal
Publication:1824101
DOI10.1007/BF01160952zbMath0682.35047OpenAlexW2913159604MaRDI QIDQ1824101
Publication date: 1989
Published in: Mathematische Zeitschrift (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/174022
Nonlinear boundary value problems for linear elliptic equations (35J65) Plurisubharmonic functions and generalizations (32U05)
Cites Work
- Unnamed Item
- Unnamed Item
- Solving the degenerate complex Monge-Ampère equation with one concentrated singularity
- Radially symmetric boundary value problems for real and complex elliptic Monge-Ampère equations
- Regularity of the complex Monge-Ampère equation for radially symmetric functions of the unit ball
- The Dirichlet problem for the degenerate Monge-Ampère equation
- Sur l'existence et la régularité de solutions radiales pour des équations de type Monge-Ampère complexe. (Existence and regularity of radial solutions for complex equations of Monge-Ampère type)
- The dirichlet problem for nonlinear second-order elliptic equations. II. Complex monge-ampère, and uniformaly elliptic, equations
- On the Dirichlet problem for the complex Monge-Ampère operator
This page was built for publication: Sur l'existence de solutions \(C^{1,1/n}\), \(C^{1,1}\) et \(C^ 2\), radiales pour des équations de type Monge-Ampère complexe dans la boule unité de \({\mathbb{C}}^ n\). (On the existence of \(C^{1,1/n}\), \(C^{1,1}\) and \(C^ 2\) solutions of complex