Carathéodory Fejér interpolation in the ball with mixed derivatives
DOI10.1016/j.laa.2003.11.029zbMath1058.30028OpenAlexW2074402061MaRDI QIDQ1826817
Publication date: 6 August 2004
Published in: Linear Algebra and its Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.laa.2003.11.029
moment problemsSchur multipliersreproducing kernel Hilbert spacematrix-valued functionsCarathódory-Fejér interpolationLeibenson backward shift operators
Moment problems and interpolation problems in the complex plane (30E05) Hilbert spaces with reproducing kernels (= (proper) functional Hilbert spaces, including de Branges-Rovnyak and other structured spaces) (46E22) Hilbert spaces of continuous, differentiable or analytic functions (46E20) Holomorphic functions of several complex variables (32A10)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On a bitangential interpolation problem for contractive-valued functions on the unit ball
- Interpolation problems of Pick-Nevanlinna and Loewner types for meromorphic matrix functions: Parametrization of the set of all solutions
- The commutant lifting approach to interpolation problems
- Interpolation of rational matrix functions
- The Schur algorithm and reproducing kernel Hilbert spaces in the ball
- A bitangential interpolation problem on the closed unit ball for multipliers of the Arveson space
- Backward shift operator and finite dimensional de Branges Rovnyak spaces in the ball.
- A theorem of Beurling-Lax type for Hilbert spaces of functions analytic in the unit ball
- A Beurling-Lax type theorem in the unit ball
- Finite dimensional backward shift invariant subspaces of Arveson spaces
- Invariant subspaces and Nevanlinna-Pick kernels
- Carathéodory--Fejér interpolation in the ball.
- A commutant lifting theorem on the polydisc
- Interpolation problems, extensions of symmetric operators and reproducing kernel spaces. II
- Interpolation problems, extensions of symmetric operators and reproducing kernel spaces. II
- Boundary interpolation in the ball
- Positive Carathéodory interpolation on the polydisc