Metric geometry in homogeneous spaces of the unitary group of a \(C^*\)-algebra. I: Minimal curves
DOI10.1016/S0001-8708(03)00148-8zbMath1060.53076MaRDI QIDQ1826889
Luis E. Mata-Lorenzo, Lázaro Recht, Carlos Eduardo Durán
Publication date: 6 August 2004
Published in: Advances in Mathematics (Search for Journal in Brave)
Selfadjoint operator algebras ((C^*)-algebras, von Neumann ((W^*)-) algebras, etc.) (46L99) Infinite-dimensional Lie groups and their Lie algebras: general properties (22E65) Riemannian, Finsler and other geometric structures on infinite-dimensional manifolds (58B20) Global differential geometry of Finsler spaces and generalizations (areal metrics) (53C60) Linear operators in (C^*)- or von Neumann algebras (47C15)
Related Items (27)
Cites Work
- Differential geometry of systems of projections in Banach algebras
- The geometry of spaces of projections in \(C^*\)-algebras
- Convexity of the geodesic distance on spaces of positive operators
- The space of spectral measures is a homogeneous reductive space
- Conditional expectations and operator decompositions
- Isometric submersions of Finsler manifolds
- Minimality of Geodesics in Grassmann Manifolds
- A Geometric Interpretation of Segal's Inequality || e X + Y || ≤ || e X/2 e Y e X/2 ||
- Selected new aspects of the calculus of variations in the large
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Metric geometry in homogeneous spaces of the unitary group of a \(C^*\)-algebra. I: Minimal curves