Over \(\sum\limits_{n=1}^m \dfrac{1}{n^{2h}}\) en \(\sum\limits_{n=1}^\infty \dfrac{1}{n^{2h}}= \zeta (2h)\).
From MaRDI portal
Publication:1835050
zbMath55.0130.06MaRDI QIDQ1835050
Publication date: 1929
Published in: Nieuw Archief voor Wiskunde. Tweede Serie (Search for Journal in Brave)
This page was built for publication: Over \(\sum\limits_{n=1}^m \dfrac{1}{n^{2h}}\) en \(\sum\limits_{n=1}^\infty \dfrac{1}{n^{2h}}= \zeta (2h)\).