Minimal eigenvalue of large sparse matrices by an efficient reverse power-conjugate gradient scheme
From MaRDI portal
Publication:1836519
DOI10.1016/0045-7825(83)90049-XzbMath0505.73057OpenAlexW1964267036MaRDI QIDQ1836519
Giuseppe Gambolati, Anna Maria Perdon
Publication date: 1983
Published in: Computer Methods in Applied Mechanics and Engineering (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0045-7825(83)90049-x
minimal eigenvalueaccurate estimatedouble iterative schemeexternal and internal iterationslarge sparse positive definite matricesmodified conjugate gradientsreverse power
Numerical computation of eigenvalues and eigenvectors of matrices (65F15) Numerical and other methods in solid mechanics (74S99)
Related Items
LEFTMOST EIGENVALUE OF REAL AND COMPLEX SPARSE MATRICES ON PARALLEL COMPUTER USING APPROXIMATE INVERSE PRECONDITIONING, An improved iterative optimization technique for the leftmost eigenpairs of large symmetric matrices, Computation of minimum eigenvalue through minimization of rayleigh's quotient for large sparse matrices using vector computer:, Extreme eigenvalues of large sparse matrices by Rayleigh quotient and modified conjugate gradients
Cites Work