Domain decomposition methods for nonlinear problems in fluid dynamics
DOI10.1016/0045-7825(83)90045-2zbMath0505.76068OpenAlexW1977315346MaRDI QIDQ1836562
Q. V. Dinh, Jacques Periaux, Roland Glowinski
Publication date: 1983
Published in: Computer Methods in Applied Mechanics and Engineering (Search for Journal in Brave)
Full work available at URL: https://hal.inria.fr/inria-00076413/file/RR-0147.pdf
nonlinearnonlinear least squaresconjugate gradient solverdomain splitting methodstwo- and three-dimensionalweighted residual formulations
Numerical optimization and variational techniques (65K10) Navier-Stokes equations for incompressible viscous fluids (76D05) Transonic flows (76H05) Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs (65N30) Basic methods in fluid mechanics (76M99)
Related Items
Cites Work
- On the numerical solution of nonlinear problems in fluid dynamics by least squares and finite element methods. I. Least square formulations and conjugate gradient solution of the continuous problems
- Numerical Methods for the First Biharmonic Equation and for the Two-Dimensional Stokes Problem
- A Survey of Parallel Algorithms in Numerical Linear Algebra
- Equivalent Norms for Sobolev Spaces
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item