Galois module structure of elementary abelian extensions
From MaRDI portal
Publication:1837722
DOI10.1016/0021-8693(83)90176-XzbMath0508.12008OpenAlexW1968850558MaRDI QIDQ1837722
Publication date: 1983
Published in: Journal of Algebra (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0021-8693(83)90176-x
Integral representations related to algebraic numbers; Galois module structure of rings of integers (11R33) Other abelian and metabelian extensions (11R20)
Related Items (29)
Opérations d'Adams et groupe des classes d'algèbre de groupe. (Adams operations and class groups of group algebras) ⋮ Kernel groups and nontrivial Galois module structure of imaginary quadratic fields ⋮ Real abelian fields satisfying the Hilbert-Speiser condition for some small primes \(p\) ⋮ Nontrivial Galois module structure of cyclotomic fields ⋮ Relative Galois module structure of octahedral extensions ⋮ Relative Galois structure of rings of integers. ⋮ On the restricted Hilbert-Speiser and Leopoldt properties ⋮ A class number formula for elementary-Abelian-group rings ⋮ Realizable Galois module classes over the group ring for non abelian extensions ⋮ Swan modules and Hilbert-Speiser number fields ⋮ Note on imaginary quadratic fields satisfying the Hilbert-Speiser condition at a prime \(p\) ⋮ Cyclotomic Swan subgroups and primitive roots. ⋮ Hilbert-Speiser number fields for a prime \(p\) inside the \(p\)-cyclotomic field ⋮ On realizable Galois module classes and Steinitz classes of nonabelian extensions ⋮ On the relative Galois module structure of rings of integers in tame extensions ⋮ Tame Galois module structure revisited ⋮ Note on Galois descent of a normal integral basis of acyclic extension of degree \(p\) ⋮ Hilbert-Speiser number fields and the complex conjugation ⋮ Galois module structure for dihedral extensions of degree 8: realizable classes over the group ring ⋮ Cyclotomic Swan subgroups and irregular indices ⋮ Stickelberger ideals of conductor \(p\) and their application ⋮ Hilbert-Speiser number fields and Stickelberger ideals ⋮ Note on the rings of integers of certain tame 2-Galois extensions over a number field ⋮ Tame realisable classes over Hopf orders ⋮ On the self-duality of rings of integers in tame and abelian extensions ⋮ Sur la structure galoisienne relative de puissances de la différente et idéaux de stickelberger ⋮ Ramification invariants and torsion Galois module structure in number fields ⋮ Classes réalisables d'extensions non abéliennes ⋮ A generalization of the norm residue symbol
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Modules over finite groups
- Stickelberger relations and tame extensions of prime degree
- On Fröhlich's conjecture for rings of integers of tame extensions
- A class number formula for elementary-Abelian-group rings
- Cyclic extensions of prime power degree and corresponding residue systems
This page was built for publication: Galois module structure of elementary abelian extensions