Nouvelle demonstration d'une congruence modulo 16 entre les nombres de classes d'ideaux de \(Q(\sqrt{-2p})\) et \(Q(\sqrt{2p})\) pour p premier = 1 (mod 4)
From MaRDI portal
Publication:1838516
DOI10.3792/pjaa.57.507zbMath0509.12006OpenAlexW2070161933MaRDI QIDQ1838516
Publication date: 1981
Published in: Proceedings of the Japan Academy. Series A (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.3792/pjaa.57.507
Related Items (3)
Congruences dyadiques entre nombres de classes de corps quadratiques. (Dyadic congruences between class numbers of quadratic fields) ⋮ Module de continuité des fonctions \(L\) 2-adiques des caractères quadratiques. (Modulus of continuity of 2-adic L-functions of quadratic characters) ⋮ On linear congruence relations between class numbers of quadratic fields
Cites Work
- Unnamed Item
- Finding paths of length \(k\) in \(O^{*}(2^k)\) time
- Congruences between class numbers of quadratic number fields
- Congruences modulo 16 for the class numbers of the quadratic fields Q(ñp) and Q(ñ2p) for p a prime congruent to 5 modulo 8
- On the class numbers of Q(√±2p) modulo 16, for p ≡ 1 (mod 8) a prime
This page was built for publication: Nouvelle demonstration d'une congruence modulo 16 entre les nombres de classes d'ideaux de \(Q(\sqrt{-2p})\) et \(Q(\sqrt{2p})\) pour p premier = 1 (mod 4)