Über die Lösbarkeit der Gleichung \(t^2-Du^2=-4\)

From MaRDI portal
Publication:1840025

DOI10.1007/BF01201346zbMath0009.29402MaRDI QIDQ1840025

Arnold Scholz

Publication date: 1935

Published in: Mathematische Zeitschrift (Search for Journal in Brave)

Full work available at URL: https://eudml.org/doc/168539




Related Items (25)

On the 2-class group of real multiquadratic fieldsA positive proportion of some quadratic number fields with infinite Hilbert 2-class field towerReal-dihedral harmonic Maass forms and CM-values of Hilbert modular functionsThe Number of Real Quadratic Fields Having Units of Negative NormSur un problème de capitulation du corps ℚ $\sqrt {p_1 p_2 } $ , i dont le 2-groupe de classes est élémentaireOn second 2-descent and non-congruent numbersUnit signature ranks in real biquadratic and multiquadratic number fieldsOn the Diophantine equation \(x^2 - Dy^2 = n\)A note on a recent paper of Iwasawa on the capitulation problemAn observation on binary quadratic forms of discrimiant -32qOn the negative Pell equationOn the rank of the 2-class group of \(\mathbb Q(\sqrt{p},\sqrt{q},\sqrt{-1})\)The narrow 2-class field tower of some real quadratic number fieldsOn the 2-class field tower of \(\mathbb Q (\sqrt{2p_1p_2},i)\) and the Galois group of its second Hilbert 2-class fieldSome questions on biquadratic Pólya fieldsOn the rank of the 2-class group of some imaginary triquadratic number fieldsPólya groups of the imaginary bicyclic biquadratic number fieldsStructure of \(\mathrm {Gal}(\Bbbk _2^{(2)}/\Bbbk)\) for some fields \(\Bbbk=\mathbb {Q}(\sqrt{2p_1p_2},i)\) with \(\mathbf {C}l_2(\Bbbk)\simeq (2, 2, 2)\)Biquadratic Reciprocity LawsAn Octic Reciprocity Law of Scholz TypeL‐Series for genera ats= 1Spinor genera of binary quadratic formsSpins of prime ideals and the negative Pell equationBinary quadratic forms of determinant \(-pq\)Principalization of 2-class groups of type (2, 2, 2) of biquadratic fields ${\mathbb Q}(\sqrt{p_1p_2q}, \sqrt{-1})$




This page was built for publication: Über die Lösbarkeit der Gleichung \(t^2-Du^2=-4\)