Mathematical Research Data Initiative
Main page
Recent changes
Random page
Help about MediaWiki
Create a new Item
Create a new Property
Create a new EntitySchema
Merge two items
In other projects
Discussion
View source
View history
Purge
English
Log in

The modular group and Riemann surfaces of genus two

From MaRDI portal
Publication:1845999
Jump to:navigation, search

DOI10.1007/BF01183046zbMath0286.32016OpenAlexW2063988289MaRDI QIDQ1845999

Linda Keen

Publication date: 1975

Published in: Mathematische Zeitschrift (Search for Journal in Brave)

Full work available at URL: https://eudml.org/doc/172198


Mathematics Subject Classification ID

Compact Riemann surfaces and uniformization (30F10) Moduli of Riemann surfaces, Teichmüller theory (complex-analytic aspects in several variables) (32G15) Fuchsian groups and automorphic functions (aspects of compact Riemann surfaces and uniformization) (30F35)


Related Items

Classical Schottky groups of real type of genus two. I, Hyperbolic octagons and Teichmüller space in genus 2, Riemann surfaces, Zu Fragen der Analysis im Zusammenhang mit der Gleichung \(x^2_1+\dots+x^2_n- ax_1\dots x_n=b\), A rough fundamental domain for Teichmüller spaces, Classical Schottky groups of real type of genus two. II



Cites Work

  • Unnamed Item
  • Unnamed Item
  • Algorithms for Jordan curves on compact surfaces
  • Intrinsic moduli on Riemann surfaces
  • On boundaries of Teichmüller spaces and on Kleinian groups. I
  • On boundaries of Teichmüller spaces and on Kleinian groups. II
  • A Remark on Mahler's Compactness Theorem
  • A Correction to "On Fricke Moduli"
  • Die Gruppe der Abbildungsklassen. (Das arithmetische Feld auf Flächen.)
Retrieved from "https://portal.mardi4nfdi.de/w/index.php?title=Publication:1845999&oldid=14227459"
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information
MaRDI portal item
This page was last edited on 1 February 2024, at 11:54.
Privacy policy
About MaRDI portal
Disclaimers
Imprint
Powered by MediaWiki