Euler-Poincaré characteristic and phase transition in the Potts model on \(\mathbb{Z}^2\)
From MaRDI portal
Publication:1847760
DOI10.1016/S0550-3213(02)00681-8zbMath0999.82010arXivcond-mat/0112482OpenAlexW2041232384WikidataQ105583350 ScholiaQ105583350MaRDI QIDQ1847760
Philippe Blanchard, Santo Fortunato, Daniel Gandolfo
Publication date: 23 October 2002
Published in: Nuclear Physics. B (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/cond-mat/0112482
Phase transitions (general) in equilibrium statistical mechanics (82B26) Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics (82B20) Critical phenomena in equilibrium statistical mechanics (82B27)
Related Items
Cites Work
- Interfaces in the Potts model. I: Pirogov-Sinai theory of the Fortuin- Kasteleyn representation
- Euler characteristic and related measures for random geometric sets
- Random-cluster representation of the Ashkin-Teller model
- Euler characteristic in percolation theory.
- Percolation
- Local Properties of Binary Images in Two Dimensions
- Effective \(Z(2)\) spin models of deconfinement and percolation in SU(2) gauge theory
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item