Higher algebraic \(K\)-theory of group actions with finite stabilizers
From MaRDI portal
Publication:1847923
DOI10.1215/S0012-7094-02-11311-8zbMath1012.19002arXivmath/9912155MaRDI QIDQ1847923
Angelo Vistoli, Gabriele Vezzosi
Publication date: 27 October 2002
Published in: Duke Mathematical Journal (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/math/9912155
Related Items (12)
Grassmann-Grassmann conormal varieties, integrability, and plane partitions ⋮ Higher algebraic \(K\)-theory for actions of diagonalizable groups ⋮ Atiyah-Segal theorem for Deligne-Mumford stacks and applications ⋮ Galois structure of homogeneous coordinate rings ⋮ K-theoretic exceptional collections at roots of unity ⋮ Algebraic cycles and completions of equivariant \(K\)-theory ⋮ Riemann-Roch for equivariant \(K\)-theory ⋮ Logarithmic trace and orbifold products ⋮ G-theory of root stacks and equivariant \(K\)-theory ⋮ Orbifold products for higher \(K\)-theory and motivic cohomology ⋮ Nonabelian localization in equivariant \(K\)-theory and Riemann --- Roch for quotients ⋮ Categorical measures for finite group actions
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- The \(K\)-groups of a blow-up scheme and an excess intersection formula
- Lefschetz-Riemann-Roch theorem and coherent trace formula
- Equivariant algebraic vs. topological K-homology Atiyah-Segal-style
- Higher equivariant \(K\)-theory for finite group actions
- A Lefschetz formula in equivariant algebraic \(K\)-theory
- Riemann-Roch for equivariant Chow groups
- Riemann-Roch theorems for Deligne-Mumford stacks
- Comparison of equivariant algebraic and topological K-theory
- Higher intersection theory on algebraic stacks. II
- Séminaire de géométrie algébrique du Bois Marie 1966/67, SGA 6.Dirigé par P. Berthelot, A. Grothendieck et L. Illusie, Avec la collaboration de D. Ferrand, J. P. Jouanolou, O. Jussilia, S. Kleiman, M. Raynaud et J. P. Serre. Théorie des intersections et théorème de Riemann-Roch
- Seminar of algebraic geometry du Bois-Marie 1963--1964. Topos theory and étale cohomology of schemes (SGA 4). Vol. 1: Topos theory. Exp. I--IV
- Higher algebraic K-theory: I
- Algebraic \(K\)-theory.
This page was built for publication: Higher algebraic \(K\)-theory of group actions with finite stabilizers