Sturm type problems for singular \(p\)-Laplacian boundary value problems.
From MaRDI portal
Publication:1856024
DOI10.1016/S0096-3003(02)00031-0zbMath1035.34013OpenAlexW1971251484MaRDI QIDQ1856024
Publication date: 28 January 2003
Published in: Applied Mathematics and Computation (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/s0096-3003(02)00031-0
Sturm-Liouville theory (34B24) Singular nonlinear boundary value problems for ordinary differential equations (34B16)
Related Items (3)
Global bifurcation phenomena for singular one-dimensional \(p\)-Laplacian ⋮ Existence results of sign-changing solutions for singular one-dimensional \(p\)-Laplacian problems ⋮ Second-order initial value problems with a singular indefinite weight
Cites Work
- A homotopic deformation along \(p\) of a Leray-Schauder degree result and existence for \((| u'| ^{p-2}u')'+f(t,u)=0\), \(u(0)=u(T)=0\), \(p>1\)
- Sturmian theory for ordinary differential equations
- On some analogs of Sturm's and Kneser's theorems for nonlinear systems
- Sturm-Liouville type problems for the \(p\)-Laplacian under asymptotic non-resonance conditions
- A note on the Sturmian theorem for singular boundary value problems
- Sturm-Liouville theory for the radial \(\Delta_p\)-operator
- Generalization of Fredholm alternative for nonlinear differential operators
- Nonresonant singular two-point boundary value problems
This page was built for publication: Sturm type problems for singular \(p\)-Laplacian boundary value problems.