Asymptotic representations for hypergeometric-Bessel type function and fractional integrals
From MaRDI portal
Publication:1860509
DOI10.1016/S0377-0427(02)00562-9zbMath1013.33003MaRDI QIDQ1860509
Publication date: 23 February 2003
Published in: Journal of Computational and Applied Mathematics (Search for Journal in Brave)
Fractional derivatives and integrals (26A33) Asymptotic approximations, asymptotic expansions (steepest descent, etc.) (41A60) Bessel and Airy functions, cylinder functions, ({}_0F_1) (33C10) Confluent hypergeometric functions, Whittaker functions, ({}_1F_1) (33C15)
Related Items (2)
Cites Work
- A modified Bessel-type integral transform and its compositions with fractional calculus operators on spaces \(F_{p,\mu}\) and \(F_{p,\mu}^{\prime}\)
- Computation of fractional integrals via functions of hypergeometric and Bessel type
- Modified Bessel-type function and solution of differential and integral equations.
- The special functions and their approximations. Vol. I, II
- Exact Remainders for Asymptotic Expansions of Fractional Integrals
- Asymptotic Evaluation of Fractional Integral Operators with Applications
- On integral transformations with G-function kernels
- Ăbertragung der P<scp>OST</scp>âW<scp>IDDER</scp>schen Umkehrformel der LaplaceâTransformation auf die ââTransformation
- DifferentiationssĂ€tze der ââTransformation und Differentialgleichungen nach dem Operator \documentclass{article}\pagestyle{empty}\begin{document}$ \frac{d}{dt} t^{\frac{1}{n}-v} \left( t^ {1-\frac{1}{n}} \frac{d}{dt}\right)^{n-1} t^{v+1-\frac{2}{n}} $\end{document}
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Asymptotic representations for hypergeometric-Bessel type function and fractional integrals