Verma modules over generalized Virasoro algebras Vir[\(G\)]

From MaRDI portal
Publication:1861469

DOI10.1016/S0022-4049(02)00173-1zbMath1040.17023OpenAlexW1966644576MaRDI QIDQ1861469

Jun Hu, Kaiming Zhao, Wang, Xiandong

Publication date: 9 March 2003

Published in: Journal of Pure and Applied Algebra (Search for Journal in Brave)

Full work available at URL: https://doi.org/10.1016/s0022-4049(02)00173-1




Related Items (23)

Weight modules over exp-polynomial Lie algebrasClassification of simple Harish-Chandra modules for map (super)algebras related to the Virasoro algebraClassification of irreducible Harish-Chandra modules over generalized Virasoro algebrasθ-Unitary representations for theW-algebraW(2,2)Classification of irreducible weight modules over higher rank Virasoro algebrasGeneralized Verma modules over some block algebrasVerma Modules Over the Generalized Heisenberg–Virasoro AlgebraVerma modules for rank two Heisenberg-Virasoro algebraHighest weight representations of a family of Lie algebras of Block typeUNITARY REPRESENTATIONS FOR THE SCHRÖDINGER–VIRASORO LIE ALGEBRAClassification of irreducible quasifinite modules over map Virasoro algebrasQuasi-finite Irreducible Graded Modules for the Virasoro-like AlgebraGeneralized Verma Modules over Lie Algebras of Weyl TypeVerma modules over deformed generalized Heisenberg-Virasoro algebrasHighest weight representations of a Lie algebra of Block type\(\mathcal{W}_n^+\)- and \(\mathcal{W}_n\)-module structures on \(U(\mathfrak{h}_n)\)Automorphisms and Verma modules for generalized Schrödinger-Virasoro algebrasVerma Modules Over Generalized Block AlgebrasB(b(1),b(2))Verma modules over Virasoro-like algebrasWhittaker Modules over Generalized Virasoro AlgebrasA class of new simple modules for \(\mathfrak{sl}_{n + 1}\) and the Witt algebraNonzero level Harish-Chandra modules over the Virasoro-like algebraAutomorphisms and Verma Modules for Generalized 2-dim Affine-Virasoro Algebra



Cites Work


This page was built for publication: Verma modules over generalized Virasoro algebras Vir[\(G\)]