Integral equations via saddle point problems for time-harmonic Maxwell's equations
DOI10.1016/S0377-0427(02)00658-1zbMath1016.65110MaRDI QIDQ1863688
Francis Collino, Bruno Després
Publication date: 12 March 2003
Published in: Journal of Computational and Applied Mathematics (Search for Journal in Brave)
convergenceiterative algorithmLagrange multiplierwell-posednessspectrumMaxwell equationssaddle point problemsGreen functionquadratic functionalobstacle scatteringimpedance boundary conditionssystem of integral equationtime-harmonic electromagnetic wavespenalized systemminimization problem with constraintsasymptotic behavior of electromagnetic pairsexterior Calderon projectorsincoming and outgoing electromagnetic fieldsspherical scatterer
Numerical methods for integral equations (65R20) Diffraction, scattering (78A45) Direct numerical methods for linear systems and matrix inversion (65F05)
Related Items
Cites Work
- On solutions of the Helmholtz equation in exterior domains
- Bayliss-Turkel-like radiation conditions on surfaces of arbitrary shape
- Domain decomposition method for harmonic wave propagation: A general presentation
- The fast multipole method: Numerical implementation
- Mixed and Hybrid Finite Element Methods
- Fonctionnelle quadratique et équations intégrales pour les problèmes d'onde harmonique en domaine extérieur
- Mathematical foundations for error estimation in numerical solutions of integral equations in electromagnetics
- Integral EquationsVIASaddle Point Problem for 2D Electromagnetic Problems
- A Domain Decomposition Method for the Solution of Large Electromagnetic Scattering Problems
- Multipole Translation Theory for the Three-Dimensional Laplace and Helmholtz Equations
- Inverse acoustic and electromagnetic scattering theory
- A hybrid finite element and integral equation domain decomposition method for the solution of the 3-D scattering problem
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item