Regularity theory for Hamilton--Jacobi equations
From MaRDI portal
Publication:1864661
DOI10.1016/S0022-0396(02)00013-XzbMath1023.35028MaRDI QIDQ1864661
Publication date: 18 March 2003
Published in: Journal of Differential Equations (Search for Journal in Brave)
Stability in context of PDEs (35B35) Nonlinear first-order PDEs (35F20) Perturbations of finite-dimensional Hamiltonian systems, normal forms, small divisors, KAM theory, Arnol'd diffusion (37J40)
Related Items
Some inverse problems in periodic homogenization of Hamilton-Jacobi equations, An infinite-dimensional weak KAM theory via random variables, The integrability of positively definite Lagrangian systems via variational criterion: mechanical systems, Regularity of viscosity solutions near KAM torus, Viscous stability of quasi-periodic tori, Correctors for the homogenization of Hamilton-Jacobi equations in the stationary ergodic setting, Perturbation estimates of weak KAM solutions and minimal invariant sets for nearly integrable Hamiltonian systems, The Hessian Riemannian flow and Newton’s method for effective Hamiltonians and Mather measures
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Minimal measures
- Action minimizing invariant measures for positive definite Lagrangian systems
- Lagrangian graphs, minimizing measures and Mañé's critical values
- Viscosity solutions of Hamilton-Jacobi equations, and asymptotics for Hamiltonian systems
- A stochastic analogue of Aubry-Mather theory*
- Aubry-Mather theory and periodic solutions of the forced Burgers equation
- On the minimizing measures of Lagrangian dynamical systems
- Orbites hétéroclines et ensemble de Peierls
- Sur la convergence du semi-groupe de Lax-Oleinik
- Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens
- Periodic homogenisation of Hamilton–Jacobi equations: 2. Eikonal equations
- Generic properties and problems of minimizing measures of Lagrangian systems
- Solutions KAM faibles conjuguées et barrières de Peierls
- Effective Hamiltonians and averaging for Hamiltonian dynamics. I