On a normal integral basis problem over cyclotomic \(Z_{p}\)-extensions. II.
From MaRDI portal
Publication:1864852
DOI10.1006/jnth.2002.2791zbMath1039.11072OpenAlexW1992864761MaRDI QIDQ1864852
Publication date: 23 March 2003
Published in: Journal of Number Theory (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1006/jnth.2002.2791
Iwasawa theory (11R23) Cyclotomic extensions (11R18) Integral representations related to algebraic numbers; Galois module structure of rings of integers (11R33)
Related Items (3)
Biographical Sketch of Professor Humio Ichimura ⋮ On the ring of integers of a tame Kummer extension over a number field. ⋮ Note on the ring of integers of a Kummer extension of prime degree. V.
Cites Work
- Unnamed Item
- Unnamed Item
- Class fields of abelian extensions of \(\mathbb Q\)
- Bases normales, unités et conjecture faible de Leopoldt. (Normal bases, units, and the weak Leopoldt conjecture)
- On Vandiver's conjecture and \({\mathbb{Z}}_ p\)-extensions of \({\mathbb{Q}}(\zeta_{p^ n})\)
- The Iwasawa invariant \(\mu_p\) vanishes for abelian number fields
- The Galois module structure of certain arithmetic principal homogeneous spaces
- Unités cyclotomiques, unités semi-locales et \(\mathbb{Z}_\ell\)-extensions
- Unités cyclotomiques, unités semilocales et \(\mathbb{Z}_\ell\)-extensions. II
- Swan modules and realisable classes for Kummer extensions of prime degree
- Cyclic Galois extensions of commutative rings
- Normal integral bases in Kummer extensions of prime degree
- On a normal integral bases problem over cyclotomic \(\mathbb{Z}_p\)-extensions
- On the Iwasawa invariants of certain real abelian fields
- On power integral bases of unramified cyclic extensions of prime degree
- On a power integral bases problem over cyclotomic \(\mathbb{Z}_p\)-extensions
- On \(\mathbb Z_{\ell}\)-extensions of algebraic number fields
- On some modules in the theory of cyclotomic fields
- ON THE IWASAWA INVARIANTS OF CERTAIN REAL ABELIAN FIELDS II
- On the Iwasawa Invariants of Totally Real Number Fields
- The Group of Unramified Kummer Extensions of Prime Degree
- On p-adic L-functions and normal bases of rings of integers.
- On the units of algebraic number fields
- Lectures on P-Adic L-Functions. (AM-74)
- A note on integral bases of unramified cyclic extensions of prime degree. II
This page was built for publication: On a normal integral basis problem over cyclotomic \(Z_{p}\)-extensions. II.