Finiteness conjectures for \({\mathbb F}_l[[T]]\)-analytic extensions of number fields
From MaRDI portal
Publication:1864860
DOI10.1006/jnth.2002.2798zbMath1072.11035OpenAlexW2011184728WikidataQ122912834 ScholiaQ122912834MaRDI QIDQ1864860
Publication date: 23 March 2003
Published in: Journal of Number Theory (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1006/jnth.2002.2798
function fieldstotally real fields\({\mathbb F}_lt\)-adic Galois representationsfiniteness conjecturesuniversal deformation rings.
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Explicit deformation of Galois representations
- Ein Analogon zur Fundamentalgruppe einer Riemann'schen Fläche im Zahlkörperfall
- Deforming an even representation
- Deforming an even representation. II: Raising the level
- Some cases of the Fontaine-Mazur conjecture. II
- Lifting Galois representations
- On the Fontaine-Mazur conjecture for number fields and an analogue for function fields
- Explicit Universal Deformations of Even Galois Representations
- A local-to-global principle for deformations of Galois representations
- Positively ramified extensions of algebraic number fields.
- Galois groups of local and global type
- A conjecture on arithmetic fundamental groups
This page was built for publication: Finiteness conjectures for \({\mathbb F}_lT\)-analytic extensions of number fields