Parameter estimation for hidden Markov chains
From MaRDI portal
Publication:1866243
DOI10.1016/S0378-3758(02)00318-XzbMath1021.62060OpenAlexW2037620623MaRDI QIDQ1866243
G. E. B. Archer, Michael D. Titterington
Publication date: 3 April 2003
Published in: Journal of Statistical Planning and Inference (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/s0378-3758(02)00318-x
EM algorithmincomplete datamaximum likelihoodHidden Markov modelmethod of momentsmean-field approximationsmaximum pseudo-likelihood
Lua error in Module:PublicationMSCList at line 37: attempt to index local 'msc_result' (a nil value).
Related Items (9)
Parameter estimation in latent profile models. ⋮ On the Adequacy of Variational Lower Bound Functions for Likelihood-based Inference in Markovian Models with Missing Values ⋮ Bayesian methods for neural networks and related models ⋮ Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates ⋮ Sensitivity of hidden Markov models ⋮ The influence of initial conditions on maximum likelihood estimation of the parameters of a binary hidden Markov model ⋮ Likelihood Inference for a Class of Latent Markov Models under Linear Hypotheses on the Transition Probabilities ⋮ Model parameter estimation and residual life prediction for a partially observable failing system ⋮ EM procedures using mean field-like approximations for Markov model-based image segmentation
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Parameter estimation for hidden Gibbs chains
- Parameter estimation for two-dimensional Ising fields corrupted by noise
- Bayesian estimation of hidden Markov chains: A stochastic implementation
- Consistent and asymptotically normal parameter estimates for hidden Markov models
- A generalized maximum pseudo-likelihood estimator for noisy Markov fields
- Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images
- Modeling Brain Function
- Estimation of parameters in hidden Markov models
- Hidden Markov Models for Speech Recognition
- The mean field theory in EM procedures for Markov random fields
- Maximum‐likelihood estimation for constrained‐ or missing‐data models
- A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains
This page was built for publication: Parameter estimation for hidden Markov chains