Asymptotic properties of Heine--Stieltjes and Van Vleck polynomials.
DOI10.1006/jath.2002.3705zbMath1099.33502OpenAlexW1991711762MaRDI QIDQ1867510
Edward B. Saff, Andrei Martínez-Finkelshtein
Publication date: 2 April 2003
Published in: Journal of Approximation Theory (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1006/jath.2002.3705
electrostaticslogarithmic potentialequilibrium distributionzero asymptoticsVan Vleck polynomialsgeneralized Lamé differential equationHeine--Stieltjes polynomials
Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.) (33C45) Special ordinary differential equations (Mathieu, Hill, Bessel, etc.) (34B30)
Related Items (17)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Zeros of Stieltjes and Van Vleck polynomials and applications
- Variations on a theme of Heine and Stieltjes: An electrostatic interpretation of the zeros of certain polynomials
- An electrostatics model for zeros of general orthogonal polynomials
- Expansions in products of Heine-Stieltjes polynomials
- On the zeros of Stieltjes and van Vleck polynomials
- Zeros of Stieltjes and Van Vleck Polynomials
- An Identity in the Theory of the Generalized Polynomials of Jacobi
- On the equilibrium problem for vector potentials
- On the Zeros of Stieltjes and Van Vleck Polynomials
- On Stieltjes and Van Vleck Polynomials
- Lamé differential equations and electrostatics
- On the Zeros of Van Vleck Polynomials
- A Generalization of a Theorem of Bôcher
- Two-Parameter Eigenvalue Problems in Differential Equations
This page was built for publication: Asymptotic properties of Heine--Stieltjes and Van Vleck polynomials.