Standard symmetric operators in Pontryagin spaces: A generalized von Neumann formula and minimality of boundary coefficients
DOI10.1016/S0022-1236(02)00041-1zbMath1028.47027MaRDI QIDQ1868685
Branko Ćurgus, Tomas Ya. Azizov, Aalt Dijksma
Publication date: 28 April 2003
Published in: Journal of Functional Analysis (Search for Journal in Brave)
Linear symmetric and selfadjoint operators (unbounded) (47B25) Spaces with indefinite inner product (Kre?n spaces, Pontryagin spaces, etc.) (46C20) Linear boundary value problems for ordinary differential equations with nonlinear dependence on the spectral parameter (34B07) Linear relations (multivalued linear operators) (47A06) Linear operators on spaces with an indefinite metric (47B50) Linear operators in reproducing-kernel Hilbert spaces (including de Branges, de Branges-Rovnyak, and other structured spaces) (47B32)
Related Items (8)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unitary colligations in \(\pi _ k\)-spaces, characteristic functions and Shtraus extensions
- Schur functions, operator colligations, and reproducing kernel Pontryagin spaces
- On generalized resolvents of Hermitian relations in Krein spaces
- Defect subspaces and generalized resolvents of an Hermitian operator in the space \(\Pi_\kappa\)
- Extensions of isometric and symmetric linear relations in a Krein space
- Über einige Fortsetzungsprobleme, die eng mit der Theorie hermitescher Operatoren im RaumeIIx zusammenhängen. I. Einige Funktionenklassen und ihre Darstellungen
- Eigenvalues and Pole Functions of Hamiltonian Systems with Eigenvalue Depending Boundary Conditions
- The linearization of boundary eigenvalue problems and reproducing kernel Hilbert spaces
This page was built for publication: Standard symmetric operators in Pontryagin spaces: A generalized von Neumann formula and minimality of boundary coefficients