Realizable classes of tetrahedral extensions
From MaRDI portal
Publication:1869798
DOI10.1016/S0022-314X(02)00040-9zbMath1028.11067OpenAlexW1964022035MaRDI QIDQ1869798
Bouchaïb Sodaïgui, Marjory Godin
Publication date: 28 April 2003
Published in: Journal of Number Theory (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/s0022-314x(02)00040-9
resolventGalois module structureLagrangemaximal orderSteinitz classFröhlich's Hom-description of class group
Integral representations related to algebraic numbers; Galois module structure of rings of integers (11R33) Algebraic numbers; rings of algebraic integers (11R04)
Related Items (5)
Relative Galois module structure of octahedral extensions ⋮ Realizable Galois module classes over the group ring for non abelian extensions ⋮ On realizable Galois module classes and Steinitz classes of nonabelian extensions ⋮ Galois module structure for dihedral extensions of degree 8: realizable classes over the group ring ⋮ Classes réalisables d'extensions non abéliennes
Cites Work
- Relative Galois structure of rings of integers.
- Steinitz classes of relative Galois extensions of 2-power degree and embedding problems
- Steinitz classes of extensions with Galois group \(A_4\)
- Relative Galois module structure and Steinitz classes of dihedral extensions of degree 8
- Realizable classes of quaternion extensions of degree \(4\ell\)
- Galois module structure of abelian extensions.
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Realizable classes of tetrahedral extensions