An admissible minimax estimator of a bounded scale-parameter in a subclass of the exponential family under scale-invariant squared-error loss.
From MaRDI portal
Publication:1871357
DOI10.1016/S0167-7152(02)00316-4zbMath1050.62008MaRDI QIDQ1871357
Khalil Shafie, Nader Nematollahi, Mohammad Jafari Jozani
Publication date: 7 May 2003
Published in: Statistics \& Probability Letters (Search for Journal in Brave)
Exponential familyMinimax estimationScale-invariant squared-error lossTransformed chi-square distributionTruncated parameter space
Point estimation (62F10) Bayesian inference (62F15) Minimax procedures in statistical decision theory (62C20) Admissibility in statistical decision theory (62C15)
Related Items (8)
Optimal rules and robust Bayes estimation of a gamma scale parameter ⋮ An admissible estimator for the \(r\)th power of a bounded scale parameter in a subclass of the exponential family under entropy loss function ⋮ Bayes sequential estimation for a particular exponential family of distributions under LINEX loss ⋮ Unnamed Item ⋮ A note on Pitman's measure of closeness with balanced loss function ⋮ On improving on the minimum risk equivariant estimator of a scale parameter under a lower-bound constraint ⋮ On estimation with weighted balanced-type loss function ⋮ On robust Bayesian estimation under some asymmetric and bounded loss function
Cites Work
- Group-Bayes estimation of the exponential mean: A preposterior analysis
- Estimation of scale parameter under entropy loss function
- Minimax estimation of a lower-bounded scale parameter of an \(F\) distribution
- Family of transformed chi-square distributions
- Maximum Likelihood Estimates of Monotone Parameters
- Bayes and admissibility properties of estimators in truncated parameter spaces
- Minimax estimation of a lower‐bounded scale parameter of a gamma distribution for scale‐invariant squared‐error loss
- Admissible and Minimax Estimates of Parameters in Truncated Spaces
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: An admissible minimax estimator of a bounded scale-parameter in a subclass of the exponential family under scale-invariant squared-error loss.