Kernel regression estimation when the regressor takes values in metric space
From MaRDI portal
Publication:1871541
DOI10.1016/S1631-073X(02)00012-2zbMath1020.62034OpenAlexW2077303640MaRDI QIDQ1871541
Sophie Dabo-Niang, Noureddine Rhomari
Publication date: 8 May 2003
Published in: Comptes Rendus. Mathématique. Académie des Sciences, Paris (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/s1631-073x(02)00012-2
Nonparametric regression and quantile regression (62G08) Asymptotic properties of nonparametric inference (62G20)
Related Items (11)
Nonparametric Quantile Regression Estimation for Functional Dependent Data ⋮ Nonparametric estimation of the conditional mode when the regressor is functional ⋮ Non parametric estimations of the conditional density and mode when the regressor and the response are curves ⋮ Kernel regression estimation for continuous spatial processes ⋮ Kernel density estimator in an infinite-dimensional space with a rate of convergence in the case of diffusion process. ⋮ Nearest neighbor classification in infinite dimension ⋮ Kernel regression estimation in a Banach space ⋮ Note on conditional mode estimation for functional dependent data ⋮ Rate of uniform consistency for nonparametric estimates with functional variables ⋮ Functional semiparametric partially linear model with autoregressive errors ⋮ Kernel regression estimation when the regressor takes values in metric space
Uses Software
Cites Work
- Kernel regression estimation in a Banach space
- On the almost everywhere convergence of nonparametric regression function estimates
- Functional data analysis
- Linear processes in function spaces. Theory and applications
- Density estimation in an infinite dimensional space: Application to diffusion processes
- Kernel regression estimation when the regressor takes values in metric space
- Functional nonparametric model for time series: a fractal approach for dimension reduction
- Differentiation Theorem for Gaussian Measures on Hilbert Space
- A relation between Chung's and Strassen's laws of the iterated logarithm
- The rates of convergence of kernel regression estimates and classification rules
- Rates of convergence of nearest neighbor estimation under arbitrary sampling
- Dimension fractale et estimation de la régression dans des espaces vectoriels semi-normés
This page was built for publication: Kernel regression estimation when the regressor takes values in metric space