Fibrations associated with a pencil of plane curves
DOI10.5802/afst.1011zbMath1030.32023OpenAlexW2334543853MaRDI QIDQ1872811
Françoise Michel, Hélène Maugendre
Publication date: 6 July 2003
Published in: Annales de la Faculté des Sciences de Toulouse. Mathématiques. Série VI (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=AFST_2001_6_10_4_745_0
equisingularitycharacteristic polynomialminimal resolutionEuler numbersMilnor fibrationpolynomial mappencilatypical valueirregular value at infinity
Global theory and resolution of singularities (algebro-geometric aspects) (14E15) Equisingularity (topological and analytic) (32S15) Milnor fibration; relations with knot theory (32S55)
Related Items (2)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- The monodromy of a series of hypersurface singularities
- Topological series of isolated plane curve singularities
- Variétés polaires. I: Invariants polaires des singularites d'hypersurfaces
- Calcul du nombre de cycles evanouissants d'une hypersurface complexe
- Complex surfaces with a one-dimensional set of singularities
- Discriminant of a germ \((g,f): (\mathbb{C}^2,0)\to (\mathbb{C}^2,0)\) and contact quotients in the resolution of \(f\cdot g\)
- Equisingularity in germ bundles of plane curves and \(C^0\)-sufficiency
- Variation of the Milnor Fibration in Pencils of Hypersurface Singularities
- Three-Dimensional Link Theory and Invariants of Plane Curve Singularities. (AM-110)
- Courbes polaires et topologie des courbes planes
- Sur la topologie d'une famille de pinceaux de germes d'hypersurfaces complexes
- Discriminant of a Germ Φ: (C2 , 0)→(C2 , 0) and Seifert Fibred Manifolds
This page was built for publication: Fibrations associated with a pencil of plane curves