A quasi-random walk method for one-dimensional reaction-diffusion equations
DOI10.1016/S0378-4754(02)00243-4zbMath1018.65013OpenAlexW2079560423MaRDI QIDQ1873071
Shigeyoshi Ogawa, Christian Lécot
Publication date: 19 May 2003
Published in: Mathematics and Computers in Simulation (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/s0378-4754(02)00243-4
algorithmconvergencerandom walkreaction-diffusion equationsquasi-Monte Carlo methodKolmogorov equationquasi-random numbersstochastic particle methodNagumo's equationprobabilisitic methods
Monte Carlo methods (65C05) Reaction-diffusion equations (35K57) Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs (65M12) Stochastic particle methods (65C35)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Grid-free simulation of diffusion using random wall methods
- Quasi-Monte Carlo simulation of diffusion
- Solving the Hodgkin–Huxley Equations by a Random Walk Method
- Convergence of a Random Particle Method to Solutions of the Kolmogorov Equation u t = νu xx + u(1 - u)
- A Gradient Random Walk Method for Two-Dimensional Reaction-Diffusion Equations
- On a Robustness of The Random Particle Method
- A Monte Carlo Method for Scalar Reaction Diffusion Equations