A Yamabe type problem on compact spin manifolds
From MaRDI portal
Publication:1876876
DOI10.1016/j.crma.2004.03.018zbMath1053.58011OpenAlexW1998855638MaRDI QIDQ1876876
Bertrand Morel, Emmanuel Humbert, Bernd Ammann
Publication date: 20 August 2004
Published in: Comptes Rendus. Mathématique. Académie des Sciences, Paris (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.crma.2004.03.018
eigenvalueDirac operatorconformal invariantconformal class of metricsmass endomorphismcompact spin manifold
Spectral problems; spectral geometry; scattering theory on manifolds (58J50) Spin and Spin({}^c) geometry (53C27)
Related Items (3)
On a conformal invariant of the Dirac operator on noncompact manifolds ⋮ Green functions for the Dirac operator under local boundary conditions and applications ⋮ On a spin conformal invariant on manifolds with boundary
Cites Work
- Lower eigenvalue estimates for Dirac operators
- Mass endomorphism and spinorial Yamabe type problems on conformally flat manifolds
- The smallest Dirac eigenvalue in a spin-conformal class and cmc immersions
- Conformal deformation of a Riemannian metric to constant scalar curvature
- A conformal lower bound for the smallest eigenvalue of the Dirac operator and Killing spinors
- Eigenvalue bounds for the Dirac operator
- Spineurs, opérateurs de Dirac et variations de métriques. (Spinors, Dirac operators and variations of the metrics)
- Equations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire
- A spin-conformal lower bound of the first positive Dirac eigenvalue
- Positive mass theorem for the Yamabe problem on spin manifolds
- The Yamabe problem
- Critical metrics for the determinant of the Laplacian in odd dimensions
- Unnamed Item
- Unnamed Item
This page was built for publication: A Yamabe type problem on compact spin manifolds