Anisotropic finite elements for the Stokes problem: a posteriori error estimator and adaptive mesh
DOI10.1016/j.cam.2003.12.025zbMath1060.65120OpenAlexW2007265172MaRDI QIDQ1877176
Publication date: 16 August 2004
Published in: Journal of Computational and Applied Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.cam.2003.12.025
finite element methodnumerical examplesStokes problemboundary layeradaptive mesherror estimatoranisotropic meshre-entrant cornerinternal layerstrengthened Cauchy-Schwarz inequalitycrack simulation
Boundary value problems for second-order elliptic equations (35J25) Finite element methods applied to problems in solid mechanics (74S05) Error bounds for boundary value problems involving PDEs (65N15) Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs (65N30) Navier-Stokes equations (35Q30) Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs (65N50)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Finite element approximation of the Navier-Stokes equations
- Towards adaptive finite element schemes for partial differential Volterra equation solvers
- A posteriori error estimators for the Stokes equations
- A posteriori error estimators for the Stokes equations. II: Non- conforming discretizations
- Hierarchical a posteriori error estimator. Application to mixed finite elements
- On a posteriori error estimators in the infinite element method on anisotropic meshes
- An anisotropic \(h\)-adaptive finite element method for compressible Navier-Stokes equations
- Edge residuals dominate a posteriori error estimates for linear finite element methods on anisotropic triangular and tetrahedral meshes
- Small data oscillation implies the saturation assumption
- Stability of discretizations of the Stokes problem on anisotropic meshes
- An a posteriori error estimator for anisotropic refinement
- An a posteriori finite element error analysis for the Stokes equations
- A posteriori L2 error estimation on anisotropic tetrahedral finite element meshes
- A non-conforming finite element method with anisotropic mesh grading for the Stokes problem in domains with edges
- A Posteriori Error Estimators for the Stokes and Oseen Equations
- The Role of the Strengthened Cauchy–Buniakowskii–Schwarz Inequality in Multilevel Methods
- The Maximum Angle Condition for Mixed and Nonconforming Elements: Application to the Stokes Equations
- Numerical Methods for Computing Angles Between Linear Subspaces
- Anisotropic voronoi diagrams and guaranteed-quality anisotropic mesh generation
- Crouzeix-Raviart type finite elements on anisotropic meshes