Weak approximation of killed diffusion using Euler schemes.
DOI10.1016/S0304-4149(99)00109-XzbMath1045.60082OpenAlexW2163891345WikidataQ127352592 ScholiaQ127352592MaRDI QIDQ1877395
Publication date: 7 September 2004
Published in: Stochastic Processes and their Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/s0304-4149(99)00109-x
Malliavin calculusweak approximationorthogonal projectionEuler schemeItô's formulaerror expansionkilled diffusionlocal time on the boundary
Diffusion processes (60J60) Computational methods for stochastic equations (aspects of stochastic analysis) (60H35) Numerical solutions to stochastic differential and integral equations (65C30)
Related Items (81)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Martingale methods in financial modelling.
- Formules de changement de variables
- Approximation des trajectoires et temps local des diffusions. (Approximation of trajectories and local times of diffusions)
- Monte-Carlo methods for the transport and diffusion equations
- The law of the Euler scheme for stochastic differential equations. I: Convergence rate of the distribution function
- Exact asymptotics for the probability of exit from a domain and applications to simulation
- A Continuity Correction for Discrete Barrier Options
- Brownian approximations to first passage probabilities
- Elliptic Partial Differential Equations of Second Order
- Schéma d'Euler continu pour des diffusions tuées et options barrière
- Schéma d'Euler discret pour diffusion multidimensionnelle tuée
- Numerical Approximation for Functionals of Reflecting Diffusion Processes
- The Law of the Euler Scheme for Stochastic Differential Equations: II. Convergence Rate of the Density
- Bounds for the fundamental solution of a parabolic equation
This page was built for publication: Weak approximation of killed diffusion using Euler schemes.