Division and composition theorems in the ring of analytic Dirichlet series.
From MaRDI portal
Publication:1878466
DOI10.5802/aif.2000zbMath1077.32002OpenAlexW2317141587MaRDI QIDQ1878466
Augustin Mouze, Frederic Bayart
Publication date: 20 August 2004
Published in: Annales de l'Institut Fourier (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=AIF_2003__53_7_2039_0
Commutative rings defined by factorization properties (e.g., atomic, factorial, half-factorial) (13F15) Dirichlet series, exponential series and other series in one complex variable (30B50) Analytic algebras and generalizations, preparation theorems (32B05)
Related Items (max. 100)
Harmonic Analysis of Some Arithmetical Functions ⋮ Dirichlet series from the infinite dimensional point of view ⋮ The Fréchet Schwartz Algebra of Uniformly Convergent Dirichlet Series ⋮ Dirichlet spaces and their composition operators
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Hardy spaces of Dirichlet series and their composition operators
- The ring of number-theoretic functions
- When \(\varphi(f)\) convergent implies \(f\) is convergent
- Ordre, convergence et sommabilité de produits de séries de Dirichlet. (Order, convergence and summability of products of Dirichlet series.)
- The composition operators on the space of Dirichlet series with square summable coefficients
- The ring of analytic Dirichlet series is factorial
- On composite formal power series
- Division dans l'anneau des séries formelles à croissance contrôlée. Applications
This page was built for publication: Division and composition theorems in the ring of analytic Dirichlet series.