Mathematical Research Data Initiative
Main page
Recent changes
Random page
Help about MediaWiki
Create a new Item
Create a new Property
Create a new EntitySchema
Merge two items
In other projects
Discussion
View source
View history
Purge
English
Log in

Using elliptic curves to produce quadratic number fields of high three-rank

From MaRDI portal
Publication:1880823
Jump to:navigation, search

DOI10.1216/rmjm/1181069870zbMath1107.11045OpenAlexW1977539495MaRDI QIDQ1880823

Matt Delong

Publication date: 1 October 2004

Published in: Rocky Mountain Journal of Mathematics (Search for Journal in Brave)

Full work available at URL: https://doi.org/10.1216/rmjm/1181069870


zbMATH Keywords

elliptic curveMordell-Weil groupquadratic fieldSpiegelungssatzShanks' polynomialthree-rank


Mathematics Subject Classification ID

Quadratic extensions (11R11) Elliptic curves over global fields (11G05) Class numbers, class groups, discriminants (11R29)


Related Items (1)

Quadratic fields with a class group of large 3-rank



Cites Work

  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Groupes de Selmer et corps cubiques. (Selmer group and cubic fields)
  • Some simple elliptic surfaces of genus zero
  • On a parameterized family of quadratic and cubic fields
  • New types of quadratic fields having three invariants divisible by 3
  • Class Groups of Quadratic Fields
  • Über die Beziehung der Klassenzahlen quadratischer Körper zueinander.
  • A quadratic field of prime discriminant requiring three generators for its class group, and related theory


This page was built for publication: Using elliptic curves to produce quadratic number fields of high three-rank

Retrieved from "https://portal.mardi4nfdi.de/w/index.php?title=Publication:1880823&oldid=14283422"
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information
MaRDI portal item
This page was last edited on 1 February 2024, at 13:00.
Privacy policy
About MaRDI portal
Disclaimers
Imprint
Powered by MediaWiki