Spectral distributions for long range perturbations
DOI10.1016/j.jfa.2003.07.005zbMath1088.35041OpenAlexW2027580798MaRDI QIDQ1883238
Publication date: 1 October 2004
Published in: Journal of Functional Analysis (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jfa.2003.07.005
Pseudodifferential operators as generalizations of partial differential operators (35S05) Scattering theory for PDEs (35P25) PDEs in connection with quantum mechanics (35Q40) Selfadjoint operator theory in quantum theory, including spectral analysis (81Q10) (S)-matrix theory, etc. in quantum theory (81U20) (2)-body potential quantum scattering theory (81U05)
Related Items (max. 100)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Growth order of eigenfunctions of Schrödinger operators with potentials admitting some integral conditions. II: Applications
- Breit-Wigner formulas for the scattering phase and the total scattering cross-section in the semi-classical limit
- Trace formula for nontrace-class perturbations
- Regularized spectral shift function for one-dimensional Schrödinger operator with slowly decreasing potential
- The shape resonance
- Asymptotic behavior of the scattering phase for non-trapping obstacles
- Relative zeta functions, relative determinants and scattering theory
- Trace distributions associated to the Schrödinger operator
- Relative time-delay for perturbations of elliptic operators and semiclassical asymptotics
- Scattering asymptotics for Riemann surfaces
- The scattering amplitude for the Schrödinger equation with a long-range potential
- Semiclassical resolvent estimates for trapping perturbations
- Breit-Wigner approximation and the distribution of resonances
- Fonction spectrale pour des perturbations relativement Hilbert–Schmidt
- Generalized scattering phase for long range perturbations of elliptic operators
- Résonances en limite semi-classique
- Une formule de traces pour l'opérateur de Schrödinger dans $\mathbb{R}^3$
- Asymptotique de la phase de diffusion à haute énergie pour des perturbations du second ordre du laplacien
- REGULARIZED TRACES AND TAYLOR EXPANSIONS FOR THE HEAT SEMIGROUP
- On a trace formula of the Buslaev–Faddeev type for a long-range potential
- Spectral shift function of the schrödinger operator in the large coupling constant limit
- Interpolation zwischen den Klassen 𝔖p von Operatoren in Hilberträumen
This page was built for publication: Spectral distributions for long range perturbations