Splitting of exact sequences of Fréchet spaces in the absence of continuous norms
DOI10.1016/j.jmaa.2004.05.014zbMath1065.46003OpenAlexW1963746252MaRDI QIDQ1883375
Publication date: 12 October 2004
Published in: Journal of Mathematical Analysis and Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jmaa.2004.05.014
Fréchet spacesshort exact sequencescontinuous normdifferential complexesproperty (DN)right inversesproperty (\(\Omega)\)
Locally convex Fréchet spaces and (DF)-spaces (46A04) Homological methods in functional analysis (exact sequences, right inverses, lifting, etc.) (46M18) Lattices of continuous, differentiable or analytic functions (46E05) Topological linear spaces of test functions, distributions and ultradistributions (46F05) Topological invariants ((DN), ((Omega)), etc.) for locally convex spaces (46A63) Applications of functional analysis to differential and integral equations (46N20)
Cites Work
- Characterization of the linear partial differential operators with constant coefficients that admit a continuous linear right inverse
- Charakterisierung der Unterräume von \((s)\)
- Fortsetzungen von \(C^\infty\)-Funktionen, welche auf einer abgeschlossenen Menge in \(R^ n\) definiert sind
- A splitting theorem for the space of smooth functions
- Derived functors in functional analysis
- A sufficient condition for vanishing of the derived projective limit functor
- On the functors Ext¹(E,F) for Fréchet spaces
- Charakterisierung der Quotientenräume von s und eine Vermutung von Martineau
- Distributional complexes split for positive dimensions
- A splitting theory for the space of distributions
- ON A STEIN MANIFOLD THE DOLBEAULT COMPLEX SPLITS IN POSITIVE DIMENSIONS
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Splitting of exact sequences of Fréchet spaces in the absence of continuous norms