Integral operators on the halfspace in generalized Lebesgue spaces \(L^{p(\cdot)}\). I, II
From MaRDI portal
Publication:1883439
DOI10.1016/j.jmaa.2004.05.048zbMath1128.47044OpenAlexW4206665446MaRDI QIDQ1883439
Publication date: 12 October 2004
Published in: Journal of Mathematical Analysis and Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jmaa.2004.05.048
Navier-Stokes equations for incompressible viscous fluids (76D05) Singular and oscillatory integrals (Calderón-Zygmund, etc.) (42B20) Magnetohydrodynamics and electrohydrodynamics (76W05) Integral operators (47G10)
Related Items
Integral operators on the halfspace in generalized Lebesgue spaces \(L^{p(\cdot)}\). I, II, Boundary regularity estimates in Hölder spaces with variable exponent, Modeling, mathematical and numerical analysis of electrorheological fluids., Hölder regularity of the gradient for the non-homogeneous parabolicp(x,t)-Laplacian equations, Unnamed Item, Existence of local strong solutions for motions of electrorheological fluids in three dimensions, Maximal operator on variable Lebesgue spaces for almost monotone radial exponent, Hölder regularity for the general parabolic \(p(x, t)\)-Laplacian equations, The Stokes and Poisson problem in variable exponent spaces, Maximal functions on Musielak--Orlicz spaces and generalized Lebesgue spaces, Weighted gradient estimates for the general elliptic \(p(x)\)-Laplacian equations
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Density \(C_0^{\infty}(\mathbb{R}^n)\) in the generalized Sobolev spaces \(W^{m,p(x)}(\mathbb{R}^n)\).
- Integral operators on the halfspace in generalized Lebesgue spaces \(L^{p(\cdot)}\). I, II
- On Singular Integrals
- Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I
- OnLp(x)norms
- An existence result for fluids with shear dependent viscosity — Steady flows
- Calderón-Zygmund operators on generalized Lebesgue spaces Lp(⋅) and problems related to fluid dynamics
- Sobolev embeddings with variable exponent
- Maximal function on generalized Lebesgue spaces L^p(⋅)
- EXISTENCE AND REGULARITY OF SOLUTIONS AND THE STABILITY OF THE REST STATE FOR FLUIDS WITH SHEAR DEPENDENT VISCOSITY
- Sobolev embedding theorems for spaces \(W^{k,p(x)}(\Omega)\)