Paracategories. II: Adjunctions, fibrations and examples from probabilistic automata theory
DOI10.1016/S0304-3975(03)00317-7zbMath1070.68096OpenAlexW2060171020WikidataQ59196695 ScholiaQ59196695MaRDI QIDQ1884930
Publication date: 27 October 2004
Published in: Theoretical Computer Science (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/s0304-3975(03)00317-7
Adjoint functors (universal constructions, reflective subcategories, Kan extensions, etc.) (18A40) Algebraic theory of languages and automata (68Q70) Categories admitting limits (complete categories), functors preserving limits, completions (18A35) Closed categories (closed monoidal and Cartesian closed categories, etc.) (18D15) Definitions and generalizations in theory of categories (18A05)
Related Items (max. 100)
Cites Work
- Realization theory for automata in categories
- Categorical logic and type theory
- Braided tensor categories
- Representable multicategories
- Paracategories. I: Internal paracategories and saturated partial algebras
- Reactive, generative, and stratified models of probabilistic processes
- A reflection theorem for closed categories
- Cosmoi of Internal Categories
- Machines in a Category: An Expository Introduction
- Universal aspects of probabilistic automata
- Automata in general algebras
- Realization is universal
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Paracategories. II: Adjunctions, fibrations and examples from probabilistic automata theory