A mixed problem with an integral condition for a hyperbolic equation.
From MaRDI portal
Publication:1889551
DOI10.1023/A:1026167021195zbMath1073.35146MaRDI QIDQ1889551
Publication date: 2 December 2004
Published in: Mathematical Notes (Search for Journal in Brave)
Related Items (21)
Well posedness of a nonlinear mixed problem for a parabolic equation with integral condition ⋮ Non-local problem with an integral condition for a parabolic equation with a Bessel operator ⋮ ABOUT SOLVABILITY OF ONE PROBLEM WITH NONLOCAL
 CONDITIONS FOR HYPERBOLIC EQUATION ⋮ A PROBLEM WITH NONLOCAL CONDITION FOR ONE-DIMENSIONAL HYPERBOLIC EQUATION ⋮ Unnamed Item ⋮ A problem with integral conditions for an elliptic-parabolic equation ⋮ On One Boundary-Value Problem with Two Nonlocal Conditions for a Parabolic Equation ⋮ Mixed problems with integral conditions for hyperbolic equations with the Bessel operator ⋮ Classical solution of a problem with an integral condition for the one-dimensional wave equation ⋮ Unnamed Item ⋮ Unnamed Item ⋮ The Gellerstedt Equation with Integral Perturbation in the Cauchy Data ⋮ On the general stability of a viscoelastic wave equation with an integral condition ⋮ Mixed problem with an integral condition for the one-dimensional biwave equation ⋮ О разрешимости одной смешанной задачи для нелинейного дифференциального уравнения в частных производных высокого порядка ⋮ Unnamed Item ⋮ Разрешимость нелокальной задачи для гиперболического уравнения с вырождающимися интегральными условиями ⋮ SOLVABILITY OF A NONLOCAL PROBLEM WITH INTEGRAL CONDITIONS OF THE II KIND FOR ONE-DIMENSIONAL HYPERBOLIC EQUATION ⋮ Нелокальная задача с нелинейным интегральным условием для гиперболического уравнения ⋮ Classical solution of a problem with integral conditions of the second kind for the one-dimensional wave equation ⋮ Uniqueness criterion for solutions of nonlocal problems on a finite interval for abstract singular equations
This page was built for publication: A mixed problem with an integral condition for a hyperbolic equation.