Isomorphic Chevalley groups over integral domains
From MaRDI portal
Publication:1891529
zbMath0831.14021MaRDI QIDQ1891529
Publication date: 13 June 1995
Published in: Rendiconti del Seminario Matematico della Università di Padova (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=RSMUP_1994__92__231_0
Lie groupcategory of groupscategory of commutative ringsabsolutely almost simple algebraic groupsrepresentable covariant functorsimple Chevalley-Demazure group schemes
Linear algebraic groups over arbitrary fields (20G15) Integral domains (13G05) Group schemes (14L15) Linear algebraic groups over adèles and other rings and schemes (20G35)
Related Items (max. 100)
Automorphisms of simple Chevalley groups over \(Q\)-algebras ⋮ Linear groups over general rings. I: Generalities. ⋮ Automorphisms of elementary adjoint Chevalley groups of types \(A_l\), \(D_l\), and \(E_l\) over local rings with \(1/2\). ⋮ Isomorphisms of adjoint Chevalley groups over integral domains ⋮ Automorphisms of Chevalley groups of types \(A_l\), \(D_l\), or \(E_l\) over local rings with \(1/2\). ⋮ Calculations in exceptional groups over rings. ⋮ Elementary equivalence of stable linear groups over local commutative rings with \(1/2\) ⋮ Automorphisms of Chevalley groups of type \(F_4\) over local rings with \(1/2\). ⋮ Normalizers of Chevalley groups of type \(G_2\) over local rings without \(1/2\) ⋮ On Representations of Elementary Subgroups of Chevalley Groups Over Algebras ⋮ Automorphisms of Chevalley groups of type \(B_l\) over local rings with \(1/2\). ⋮ Automorphisms of Chevalley groups of types \(A_l\), \(D_l\), \(E_l\) over local rings without \(1/2\). ⋮ Automorphisms of Chevalley groups of different types over commutative rings. ⋮ Automorphisms of Chevalley groups of type \(G_2\) over local rings without \(1/2\).
Cites Work
- Unnamed Item
- Unnamed Item
- Homomorphismes abstraits de groupes algébriques simples
- Chevalley groups over local rings
- Schémas en groupes. III: Structure des schémas en groupes réductifs. Exposés XIX à XXVI. Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3), dirigé par Michel Demazure et Alexander Grothendieck. Revised reprint
This page was built for publication: Isomorphic Chevalley groups over integral domains