Refined theorems of the Birch and Swinnerton-Dyer type
From MaRDI portal
Publication:1891883
DOI10.5802/aif.1457zbMath0821.11036OpenAlexW2313889691MaRDI QIDQ1891883
Publication date: 1 June 1995
Published in: Annales de l'Institut Fourier (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=AIF_1995__45_2_317_0
elliptic curve\(L\)-functionBirch-Swinnerton-Dyer conjectureheight pairingcorrected discriminantMazur- Tate conjecture
Elliptic curves over global fields (11G05) (L)-functions of varieties over global fields; Birch-Swinnerton-Dyer conjecture (11G40) Arithmetic ground fields for abelian varieties (14K15) Global ground fields in algebraic geometry (14G25) Elliptic curves over local fields (11G07)
Related Items
The Iwasawa main conjecture for semistable abelian varieties over function fields, On the \(\mu\)-invariants of abelian varieties over function fields of positive characteristic, Stickelberger elements over rational function fields
Cites Work
- Multiplicative independence in function fields
- On \(p\)-adic analogues of the conjectures of Birch and Swinnerton-Dyer
- Refined conjectures of the ``Birch and Swinnerton-Dyer type
- The arithmetic of elliptic curves
- On a conjecture of Artin and Tate
- Modular elements over function fields
- \(p\)-adic \(L\)-functions and \(p\)-adic periods of modular forms
- Séminaire de Géométrie Algébrique Du Bois-Marie 1967--1969. Groupes de monodromie en géométrie algébrique (SGA 7 I). Dirigé par A. Grothendieck avec la collaboration de M. Raynaud et D. S. Rim. Exposés I, II, VI, VII, VIII, IX
- Algorithm for determining the type of a singular fiber in an elliptic pencil
- The associated graded ring of an integral group ring
- NÉRON PAIRING AND QUASICHARACTERS
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item