On the \(K\)-theory and Hattori-Stallings traces of minimal primitive factors of enveloping algebras of semisimple Lie algebras: the singular case
From MaRDI portal
Publication:1893884
DOI10.5802/aif.1471zbMath0818.17006OpenAlexW2057175795MaRDI QIDQ1893884
Publication date: 12 July 1995
Published in: Annales de l'Institut Fourier (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=AIF_1995__45_3_707_0
Grothendieck groups, (K)-theory, etc. (16E20) Universal enveloping (super)algebras (17B35) Grassmannians, Schubert varieties, flag manifolds (14M15) Universal enveloping algebras of Lie algebras (16S30)
Related Items (2)
On the Hattori-Stallings trace for certain primitive factors of enveloping algebras of semisimple Lie algebras ⋮ Non-finitely generated projective modules over generalized Weyl algebras.
Cites Work
- Localization and standard modules for real semisimple Lie groups. I: The duality theorem
- Universal versus relative enveloping algebras: a geometric study of quotients of universal enveloping algebras of semisimple Lie algebras
- Moduln mit einem höchsten Gewicht
- Euler characteristics and characters of discrete groups
- On the Hattori-Stallings trace for certain primitive factors of enveloping algebras of semisimple Lie algebras
- \(K\)-theory of twisted differential operators on flag varieties
- Invariants symétriques entiers des groupes de Weyl et torsion
- Modules of t-Finite Vectors Over Semi-Simple Lie Algebras
- On the Global Dimension of Certain Primitive Factors of the Enveloping Algebra of a Semi-Simple Lie Algebra
- Higher algebraic K-theory: I
- Anneaux de Grothendieck des variétés de drapeaux
- Chern characters, reduced ranks and -modules on the flag variety
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: On the \(K\)-theory and Hattori-Stallings traces of minimal primitive factors of enveloping algebras of semisimple Lie algebras: the singular case