Enumerative applications of a decomposition for graphs and digraphs
DOI10.1016/0012-365X(94)00135-6zbMath0827.05045OpenAlexW2073359459MaRDI QIDQ1893989
Publication date: 27 November 1995
Published in: Discrete Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0012-365x(94)00135-6
generating functionsconnected componentsdecompositiondigraphstreesTutte polynomialcomplete graphcounting graphsinversion enumeator
Trees (05C05) Exact enumeration problems, generating functions (05A15) Enumeration in graph theory (05C30) Edge subsets with special properties (factorization, matching, partitioning, covering and packing, etc.) (05C70) Directed graphs (digraphs), tournaments (05C20)
Related Items (20)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Depth-first search as a combinatorial correspondence
- Une famille de polynômes ayant plusieurs propriétés enumeratives
- Nombres d'Euler et inversions dans les arbres
- On external activity and inversions in trees
- The Tutte polynomial of a graph, depth-first search, and simplicial complex partitions
- A Noncommutative Generalization and q-Analog of the Lagrange Inversion Formula
- Enumeration of trees by inversions
- The inversion enumerator for labeled trees
- A Contribution to the Theory of Chromatic Polynomials
This page was built for publication: Enumerative applications of a decomposition for graphs and digraphs