A tame splitting theorem for exact sequences of Fréchet spaces
From MaRDI portal
Publication:1895775
DOI10.1007/BF02572355zbMath0823.46002MaRDI QIDQ1895775
Dietmar Vogt, Markus Poppenberg
Publication date: 5 November 1995
Published in: Mathematische Zeitschrift (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/174763
tameFréchet spacessplittingright inverseNash-Moserdual normexistence of continuous linear extension operatorsfundamental systems of Hilbertian seminormsholomorphic functions on complex manifolds in strictly pseudoconvex regionstamely exact sequence
Related Items (12)
Negative results on the Nash-Moser theorem for Köthe sequence spaces and for spaces of ultradifferentiable functions ⋮ Tame sequence space representations of spaces of \(C^ \infty\)-functions ⋮ Properties \((\text{DN}_{(\phi,\psi)})\) and \(\Omega_{(\phi,\psi)}\) for Fréchet spaces ⋮ Holomorphic functional calculus for operators on a locally convex space ⋮ A separable Fréchet space of almost universal disposition ⋮ Simultaneous smoothing and interpolation with respect to E. Borel's theorem ⋮ The coherence of complemented ideals in the space of real analytic functions ⋮ Extension operators for real analytic functions on compact subvarieties of ⋮ On the splitting relation for Fréchet-Hilbert spaces ⋮ On the Dependence of Analytic Solutions of Partial Differential Equations on the Right-Hand Side ⋮ On tame pairs of Fréchet spaces ⋮ Separated Presheaves of Normed Spaces and -valued Norms
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Simultaneous smoothing and interpolation with respect to E. Borel's theorem
- Tame spaces and power series spaces
- A tame splitting theorem for Köthe spaces
- Characterization of the subspaces of (s) in the tame category
- An inverse function theorem in Frechet-spaces
- A sufficient condition of type \((\Omega{})\) for tame splitting of short exact sequences of Fréchet spaces
- Convex univalent functions and continuous linear right inverses
- The boundary problems of physical geodesy
- Charakterisierung der Unterräume von \((s)\)
- Eine Charakterisierung der Potenzreihenraeume von endlichem Typ und ihre Folgerungen
- Power Series Space Representations of Nuclear Frechet Spaces
- A NEW TECHNIQUE FOR THE CONSTRUCTION OF SOLUTIONS OF NONLINEAR DIFFERENTIAL EQUATIONS
- Complemented subspaces in tame power series spaces
- Charakterisierung der Quotientenräume von s und eine Vermutung von Martineau
- The inverse function theorem of Nash and Moser
- Characterization of the Quotient Spaces of (s) in the Tame Category
- On the Dependence of Analytic Solutions of Partial Differential Equations on the Right-Hand Side
- Continuous linear right inverses for convolution operators in spaces of real analytic functions
- Un théorème de fonctions implicites sur certains espaces de Fréchet et quelques applications
This page was built for publication: A tame splitting theorem for exact sequences of Fréchet spaces