Consistent and asymptotically normal parameter estimates for hidden Markov models
From MaRDI portal
Publication:1896242
DOI10.1214/aos/1176325762zbMath0831.62060OpenAlexW2062554530MaRDI QIDQ1896242
Publication date: 13 February 1996
Published in: The Annals of Statistics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1214/aos/1176325762
consistencyasymptotic normalityregenerative processhidden Markov modelsidentifiabilitymaximum-likelihood estimatemaximum split data likelihood estimates
Asymptotic properties of parametric estimators (62F12) Non-Markovian processes: estimation (62M09) Markov processes: estimation; hidden Markov models (62M05)
Related Items (22)
Nonidentifiability of the two-state BMAP ⋮ Mixed Hidden Markov Models for Longitudinal Data: An Overview ⋮ Diffusions with measurement errors. I. Local Asymptotic Normality ⋮ A simple hidden markov model for bayesian modeling with time dependent data ⋮ A Latent Process Model for Temporal Extremes ⋮ On recursive estimation for hidden Markov models ⋮ Estimating the Order of Hidden Markov Models ⋮ Asymptotic properties of MLE for partially observed fractional diffusion system ⋮ Divide-and-conquer Bayesian inference in hidden Markov models ⋮ Estimating the parameters of a seasonal Markov-modulated Poisson process ⋮ Bayesian multivariate normal analysis under the extended reflected normal loss function ⋮ Parameter estimation for a discrete sampling of an intergrated Ornstein-Uhlenbeck process ⋮ Consistent and asymptotically normal parameter estimates for hidden Markov mixtures of Markov models ⋮ Nonidentifiability of the Two-State Markovian Arrival Process ⋮ Stationarity of multivariate Markov-switching ARMA models ⋮ Statistical Inference for Partially Hidden Markov Models ⋮ On adjusted Viterbi training ⋮ Estimation of the parameters of a Markov-modulated loss process in insurance ⋮ Pairwise Likelihood Inference for General State Space Models ⋮ The adjusted Viterbi training for hidden Markov models ⋮ Parameter estimation for hidden Markov chains ⋮ Calibrating the exponential Ornstein–Uhlenbeck multiscale stochastic volatility model
This page was built for publication: Consistent and asymptotically normal parameter estimates for hidden Markov models