On completeness and cocompleteness in and around small categories
DOI10.1016/0168-0072(94)00035-2zbMath0829.18001OpenAlexW1966573209MaRDI QIDQ1896485
Publication date: 17 January 1996
Published in: Annals of Pure and Applied Logic (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0168-0072(94)00035-2
small categoriestoposesaccessible categoriescartesian closedadjoint functor theoremequivalence of completeness and cocompleteness
Adjoint functors (universal constructions, reflective subcategories, Kan extensions, etc.) (18A40) Categorical logic, topoi (03G30) Topoi (18B25) Fibered categories (18D30) Categories admitting limits (complete categories), functors preserving limits, completions (18A35) Other constructive mathematics (03F65)
Related Items (3)
Uses Software
Cites Work
- The calculus of constructions
- A small complete category
- Categories of continuous functors. I
- ABOUT MODEST SETS
- The Discrete Objects in the Effective Topos
- Fibered categories and the foundations of naive category theory
- Constructive natural deduction and its ‘ω-set’ interpretation
- Adjointness in Foundations
- Colimits in Topoi
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: On completeness and cocompleteness in and around small categories