Euler-Poincaré characteristic and polynomial representations of Iwahori-Hecke algebras
DOI10.2977/prims/1195164438zbMath0835.05085OpenAlexW1970810572MaRDI QIDQ1897731
Jean-Yves Thibon, Gérard H. E. Duchamp, Bernard Leclerc, Thomas Scharf, Daniel Krob, Lascoux, Alain
Publication date: 19 March 1996
Published in: Publications of the Research Institute for Mathematical Sciences, Kyoto University (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.2977/prims/1195164438
symmetric groupirreducible representationsquantum superalgebrasymmetry algebraEuler-Poincaré characteristicflat manifoldsquantum spin chainIwahori-Hecke algebrahook partitionsNewton divided differencesKazhdan-Lustig graphsYang- Baxter relations
Combinatorial aspects of representation theory (05E10) Representations of finite symmetric groups (20C30) Grassmannians, Schubert varieties, flag manifolds (14M15) Applications of linear algebraic groups to the sciences (20G45)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On modules over the Hecke algebra of a p-adic group
- Hecke algebra representations of braid groups and link polynomials
- A q-analogue of Young symmetrizer
- Symmetrization operators on polynomial rings
- A Frobenius formula for the characters of the Hecke algebras
- Graded solutions of the Yang-Baxter relation and link polynomials
- Singular locus of a Schubert variety
- Representations and traces of the Hecke algebras H n(q) of type A n−1
- TURBO-STRAIGHTENING FOR DECOMPOSITION INTO STANDARD BASES
- Désingularisation des variétés de Schubert généralisées
- A TEMPLATE FOR QUANTUM SPIN CHAIN SPECTRA
- Blocks and Idempotents of Hecke Algebras of General Linear Groups
- SCHUBERT CELLS AND COHOMOLOGY OF THE SPACESG/P
- The structure of n-variable polynomial rings as Hecke algebra modules
- On induced permutation matrices and the symmetric group