Approximation of Dirichlet eigenvalues on domains with small holes
From MaRDI portal
Publication:1900647
DOI10.1006/jmaa.1995.1228zbMath0836.35105OpenAlexW2022915277MaRDI QIDQ1900647
Publication date: 1 November 1995
Published in: Journal of Mathematical Analysis and Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1006/jmaa.1995.1228
minimax principleapproximation formulasvibrating platecapacity of the holessingular domain perturbationharmonic correction method
Estimates of eigenvalues in context of PDEs (35P15) Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation (35J05) Perturbations in context of PDEs (35B20)
Related Items (21)
Capacity and Faber-Krahn inequality in \(\mathbb R^{n}\) ⋮ A boundary integral equation method for mode elimination and vibration confinement in thin plates with clamped points ⋮ Geometry of the random walk range conditioned on survival among Bernoulli obstacles ⋮ Asymptotic behavior of generalized capacities with applications to eigenvalue perturbations: the higher dimensional case ⋮ Spectral stability under removal of small capacity sets and applications to Aharonov-Bohm operators ⋮ Eigenvalues of the Laplacian in a domain with a thin tubular hole ⋮ Stabilization by multiplicative Itô noise for Chafee-Infante equation in perforated domains ⋮ Optimizing the principal eigenvalue of the Laplacian in a sphere with interior traps ⋮ Perturbed eigenvalues of polyharmonic operators in domains with small holes ⋮ On simple eigenvalues of the fractional Laplacian under removal of small fractional capacity sets ⋮ On two functionals involving the maximum of the torsion function ⋮ Domain perturbations, shift of eigenvalues and capacity ⋮ Waveguides with combined Dirichlet and Robin boundary conditions ⋮ On maximizing the fundamental frequency of the complement of an obstacle ⋮ Approximation of Eigenvalues of Elliptic Operators with Discontinuous Coefficients ⋮ The asymptotic shift for the principal eigenvalue for second order elliptic operators in the presence of small obstacles ⋮ Wildly perturbed manifolds: norm resolvent and spectral convergence ⋮ On the multiplicity of the second eigenvalue of the Laplacian in non simply connected domains – with some numerics – ⋮ The Transition to a Point Constraint in a Mixed Biharmonic Eigenvalue Problem ⋮ Capacitary asymptotic expansion of the groundstate to second order ⋮ Spectroscopy of annular drums and quantum rings: Perturbative and nonperturbative results
This page was built for publication: Approximation of Dirichlet eigenvalues on domains with small holes