A modified difference scheme for periodic and semiperiodic Sturm- Liouville problems
DOI10.1016/0168-9274(95)00067-5zbMath0834.65075OpenAlexW2027924687MaRDI QIDQ1902064
Guido Vanden Berghe, H. E. De Meyer, Marnix van Daele
Publication date: 18 April 1996
Published in: Applied Numerical Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0168-9274(95)00067-5
finite difference methodeigenvaluesnumerical experimentsfinite elementlinear multistep methodregular Sturm-Liouville problem
Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations (65L06) Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations (65L60) Finite difference and finite volume methods for ordinary differential equations (65L12) Numerical solution of eigenvalue problems involving ordinary differential equations (65L15) Eigenvalues, estimation of eigenvalues, upper and lower bounds of ordinary differential operators (34L15)
Related Items (9)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Correction of Numerov's eigenvalue estimates
- On a new type of mixed interpolation
- Correction of finite element estimates for Sturm-Liouville eigenvalues
- Correction of finite element eigenvalues for problems with natural or periodic boundary conditions
- On the correction of finite difference eigenvalue approximations for Sturm-Liouville problems
- On a correction of Numerov-like eigenvalue approximations for Sturm- Liouville problems
- A parallel approach to the modified Numerov-like eigenvalue determination for Sturm-Liouville problems
- A finite-element estimate with trigonometric hat functions for Sturm- Liouville eigenvalues
- On the error estimation for a mixed type of interpolation
- A modified numerov method for higher sturm-liouville eigenvalues
- Correction of finite difference eigenvalues of periodic Sturm-Liouville problems
- Accurate computation of higher Sturm-Liouville eigenvalues
This page was built for publication: A modified difference scheme for periodic and semiperiodic Sturm- Liouville problems