Foliations of \(M^ 3\) defined by \({\mathbb R}^ 2\)-actions
From MaRDI portal
Publication:1903308
DOI10.5802/AIF.1486zbMath0833.57014OpenAlexW2314884714MaRDI QIDQ1903308
Marcos Craizer, José Luis Arraut
Publication date: 28 November 1995
Published in: Annales de l'Institut Fourier (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=AIF_1995__45_4_1091_0
Foliations in differential topology; geometric theory (57R30) Noncompact Lie groups of transformations (57S20)
Related Items (3)
Homogenization of codimension 1 actions of \(\mathbb{R}^ n\) near a compact orbit ⋮ Orbit structure of certain \(\mathbb R^2\)-actions on solid torus ⋮ Parallel spinors on globally hyperbolic Lorentzian four-manifolds
Cites Work
- Unnamed Item
- Unnamed Item
- Differentiability of conjugacies between dynamical systems of dimension 1
- Feuilletage et difféomorphismes infiniment tangents à l'identité
- Rélations de conjugaison et de cobordisme entre certains feuilletages
- Stability of compact actions of \(\mathbb{R}^ n\) of codimension one
- A classification of the topological types of R\(^2\)-actions on closed orientable 3-manifolds
- Homogenization of codimension 1 actions of \(\mathbb{R}^ n\) near a compact orbit
- Commuting vector fields on \(S^ 3\)
- Regular iteration of real and complex functions
- A classification of closed orientable 3-manifolds of rank two
- Un théorème de conjugaison des feuilletages
- Topological equivalence of Reeb foliations
- Differentiable conjugation of actions of RP
This page was built for publication: Foliations of \(M^ 3\) defined by \({\mathbb R}^ 2\)-actions