Index formulas for geometric Dirac operators in Riemannian foliations
From MaRDI portal
Publication:1904357
DOI10.1007/BF00961279zbMath0849.58062WikidataQ115394811 ScholiaQ115394811MaRDI QIDQ1904357
Franz W. Kamber, James F. Glazebrook, Ronald G. Douglas, Guo-Liang Yu
Publication date: 10 November 1996
Published in: \(K\)-Theory (Search for Journal in Brave)
(K)-theory and homology; cyclic homology and cohomology (19D55) Index theory and related fixed-point theorems on manifolds (58J20) Index theory (19K56)
Related Items
Seiberg-Witten invariants on manifolds with Riemannian foliations of codimension 4 ⋮ Modified differentials and basic cohomology for Riemannian foliations ⋮ Riemannian foliations and geometric quantization ⋮ Natural equivariant transversally elliptic Dirac operators ⋮ Vanishing theorem for transverse Dirac operators on Riemannian foliations ⋮ The Egorov theorem for transverse Dirac-type operators on foliated manifolds ⋮ A vanishing result for the \(\mathrm{Spin}^{c}\) Dirac operator defined along the leaves of a foliation
Cites Work
- The graph of a foliation
- The longitudinal index theorem for foliations
- Non-commutative differential geometry
- A differential complex for Poisson manifolds
- Equivariant KK-theory and the Novikov conjecture
- Une notion de nucléarité en K-théorie (d'après J. Cuntz). (A notion of nuclearity in K-theory (in the sense of J. Cuntz))
- Index theory on locally homogeneous spaces
- Elliptic operators and compact groups
- Foliated bundles and characteristic classes
- The index of transversally elliptic operators for locally free actions
- The index of elliptic operators. IV, V
- Cyclic cocycles, renormalization and eta-invariants
- Finite propagation speed and Connes' foliation algebra
- Morphismes $K$-orientés d'espaces de feuilles et fonctorialité en théorie de Kasparov (d'après une conjecture d'A. Connes)
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item